Nylon 12 Tough A highly ductile and dimensionally accurate nylon powder. Nylon 12 Tough Powder offers the best-in-class refresh rate among Nylon powders, high ductility, and great dimensional accuracy across the build chamber. Print more durable parts for prototyping and small batch production that have reduced warpage without sacrificing strength. For best results, Nylon 12 Tough Powder is required to undergo a powder aging process prior to first built. Nylon 12 Tough Powder is specifically developed for use on the Fuse 1+ 30W printer. Material properties testing was completed with parts printed using aged powder on a bed temperature tuned printer. Scan the QR Codes to learn more about Powder Aging and Bed Temperature Tuning. Powde Aging Temperature Tuning **FLP12T01** Prepared 08/10/2024 Rev. 01 08/10/2024 To the best of our knowledge the information contained herein is accurate. However, Formlabs, Inc. makes no warranty, expressed or implied, regarding the accuracy of these results to be obtained from the use thereof. | Mechanical Properties | METRIC | IMPERIAL | METHOD | |----------------------------------|----------|--------------|---------------------| | Ultimate Tensile Strength | 42 MPa | 6200 psi | ASTM D638-14 Type 1 | | Tensile Modulus | 1450 MPa | 215 ksi | ASTM D638-14 Type 1 | | Elongation at Break (X/Y) | 25% | 25% | ASTM D638-14 Type 1 | | Elongation at Break (Z) | 15% | 15% | ASTM D638-14 Type 1 | | Flexural Strength | 42 MPa | 6200 psi | ASTM D790-17 | | Flexural Modulus | 1100 MPa | 165 ksi | ASTM D790-17 | | Notched Izod | 60 J/m | 1.1 ft-lb/in | ASTM D256-10 | | Thermal Properties | METRIC | IMPERIAL | METHOD | | Heat Deflection Temp. @ 1.8 MPa | 46 °C | 116 °F | ASTM D648-16 | | Heat Deflection Temp. @ 0.45 MPa | 161 °C | 321 °F | ASTM D648-16 | | Vicat Softening Temperature | 170 °C | 337 °F | ASTM D1525 | | Other Properties | METRIC | IMPERIAL | METHOD | | Water Absorption (printed part) | 0.30% | 0.30% | ASTM D570 | ## **Biocompatibility Testing In Progress** Samples are currently undergoing testing for biocompatibility. When the testing has concluded, results will be updated on this sheet. In the meantime, Formlabs recommends that customers complete their own biocompatibility evaluation specific to their intended end use. Samples printed with Nylon 12 Tough have been evaluated in accordance with ISO 10993-1:2018, and has passed the requirements for the following biocompatibility risks: | ISO Standard Description | Result ^{3,4} | |--------------------------|-----------------------| | ISO 10993-11:2017 | No systemic toxicity | | ISO 10993-5:2009 | Not cytotoxic | | ISO 10993-23:2021 | Not an irritant | | ISO 10993-10:2021 | Not a sensitizer | | ISO 10993-11:2017 | Nonpyrogenic | ## Solvent Compatibility Percent weight gain over 24 hours for a printed 1 x 1 x 1 cm cube immersed in respective solvent: | Solvent | 24 hr weight gain, % | Solvent | 24 hr weight gain, % | |---------------------------------|----------------------|---|----------------------| | Acetic Acid 5% | 0.2 | Mineral oil, heavy | 1.0 | | Acetone | 0.2 | Mineral oil, light | 0.8 | | Bleach ~5% NaOCl | 0.1 | Salt Water (3.5% NaCl) | 0.2 | | Butyl Acetate | 0.1 | Skydrol 5 | 0.8 | | Diesel Fuel | 0.6 | Sodium hydroxide solution
(0.025% pH = 10) | 0.1 | | Diethyl glycol monomethyl ether | 0.5 | Strong Acid (HCl Conc) | 5.6 | | Hydraulic Oil | 0.9 | TPM | 0.8 | | Hydrogen peroxide (3%) | 0.1 | Water | 0.1 | | Isooctane | 0.1 | Xylene | 0.2 | | Isopropyl Alcohol | 0.3 | | | Material properties may vary with part geometry, print orientation and temperature. ² Parts were printed using Fuse 1+ 30W with Nylon 12 Tough Powder. Parts were conditioned at 23 °C, 50% R.H. for 40 hours. A material properties may vary based on part design and manufacturing practices. It is the manufacture's repossibility to validate the suitability of the printed parts for the intended use.